Permanent carbon dioxide storage in deep-sea sediments

Kurt Zenz House*†, Daniel P. Schrag*, Charles F. Harvey‡, and Klaus S. Lackner§

*Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138; †Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; and §Earth Engineering Center, Columbia University, New York, NY 10027

Communicated by John P. Holdren, Harvard University, Cambridge, MA, June 27, 2006 (received for review November 10, 2005)

Stabilizing the concentration of atmospheric CO$_2$ may require storing enormous quantities of captured anthropogenic CO$_2$ in near-permanent geologic reservoirs. Because of the subsurface temperature profile of terrestrial storage sites, CO$_2$ stored in these reservoirs is buoyant. As a result, a portion of the injected CO$_2$ can escape if the reservoir is not appropriately sealed. We show that injecting CO$_2$ into deep-sea sediments <3,000-m water depth and a few hundred meters of sediment provides permanent geologic storage even with large geomechanical perturbations. At the high pressures and low temperatures common in deep-sea sediments, CO$_2$ resides in its liquid phase and can be denser than the overlying pore fluid, causing the injected CO$_2$ to be gravitationally stable. Additionally, CO$_2$ hydrate formation will impede the flow of CO$_2$(l) and serve as a second cap on the system. The evolution of the CO$_2$ plume is described qualitatively from the injection to the formation of CO$_2$ hydrates and finally to the dilution of the CO$_2$(aq) solution by diffusion. If calcareous sediments are chosen, then the dissolution of carbonate host rock by the CO$_2$(aq) solution will slightly increase porosity, which may cause large increases in permeability. Karst formation, however, is unlikely because total dissolution is limited to only a few percent of the rock volume. The total CO$_2$ storage capacity within the 200-mile economic zone of the U.S. coastline is enormous, capable of storing thousands of years of current U.S. CO$_2$ emissions.

S upplying the energy demanded by world economic growth without affecting the Earth’s climate is one of the most pressing technical and economic challenges of our time. If fossil fuels, particularly coal, remain the dominant energy source of the 21st century, then stabilizing the concentration of atmospheric CO$_2$ will require developing the capability to capture CO$_2$ from the combustion of fossil fuels and store it safely away from the atmosphere (1).

Several ideas have been proposed for the long-term storage of captured anthropogenic CO$_2$. These proposals include: storing CO$_2$ in various geologic formations [e.g., oil and gas fields (2), coal beds (3), and saline aquifers (4)], injecting CO$_2$ into the deep ocean (5, 6), and chemically transforming CO$_2$ into thermodynamically stable minerals (1, 7) or bicarbonate brines (8, 9). We describe storing CO$_2$ in deep-sea sediments as a fourth storage option that combines beneficial elements of geologic storage, oceanic storage, and geochemical storage while addressing many of their drawbacks.

Storage of captured CO$_2$ in terrestrial geologic formations is a leading candidate for near-term storage. All terrestrial geologic formations, however, face a common challenge. Because of the geothermal gradient in the continental crust, the temperature at injection is always greater than the critical temperature of CO$_2$. Under the high pressures (10–30 MPa) and high temperatures (330–400 K) of terrestrial storage sites, supercritical CO$_2$ is 40–70% less dense than the surrounding pore fluid (10). This density contrast causes the buoyant CO$_2$ to migrate upward through any available conduit. As a result, all terrestrial storage reservoirs either must have impermeable layers (i.e., cap rocks) or all of the injected CO$_2$ must become immobile as residual saturation to prevent the release of buoyant fluids. Natural-gas reservoirs have existed for millions of years, demonstrating that geologic formations can store buoyant fluids for long time periods. Over the last century, however, millions of wells have been drilled in most of the basins being considered for geologic storage, and each of these wells is a potential conduit for buoyant CO$_2$ to escape (11). The concern over leakage will require geologic storage sites to be monitored for centuries, and it is unclear who will be responsible for verifying the storage integrity over these time scales.

Injecting CO$_2$ directly into the deep ocean, where most of it will dissolve as bicarbonate, is another option for CO$_2$ storage (12). Deep-ocean injection can be seen as accelerating the natural oceanic uptake of CO$_2$, which would occur over many centuries (13). Unfortunately, because of ocean currents and local supersaturation, a large fraction of the injected CO$_2$ will be released to the atmosphere after a few hundred years (14). Additionally, direct ocean storage is currently unpopular because of concerns about the effects of CO$_2$ on marine ecosystems.† Unless there is a change in the political climate, it is unlikely that direct ocean storage will be used on large scales.

Chemically transforming captured CO$_2$ into bicarbonate brines or thermodynamically stable minerals is a third storage option. Forming bicarbonate brines through the dissolution of calcium carbonate has been suggested as a way to neutralize carbonic acid before ocean injection (8, 9). Separately, it has been proposed that CO$_2$(g) can be reacted with silicate minerals to form thermodynamically stable carbonate minerals (1). Mineralization, the most stable and permanent form of CO$_2$ storage, is an acceleration of the natural chemical weathering cycle (15). At surface temperatures, however, the reaction kinetics are very slow, and accelerating the kinetics to industrial rates with current technology costs 3 to 10 times more than terrestrial geologic storage (16).

Results

Gravitational Stability. Because of the high compressibility of CO$_2$(l) relative to water, CO$_2$(l) becomes denser than water at high pressures and low temperatures (Fig. 1). These temperature–pressure regimes do not exist in terrestrial settings; they are, however, common in the deep ocean. When CO$_2$(l) is injected into the ocean at a depth of 3,000 m, it sinks, forming a lake of CO$_2$(l) on the seafloor (17). As previously discussed, however, ocean currents will mix the injected CO$_2$(l), causing a large fraction to eventually be released into the atmosphere (14). To ensure that deep ocean currents will not mix the CO$_2$ into shallower regions, CO$_2$ can be injected below the seafloor.

Conflict of interest statement: No conflicts declared.

Abbreviations: HFZ, hydrate formation zone; NBZ, negative buoyancy zone.
†To whom correspondence should be addressed. E-mail: khouse@fas.harvard.edu.
© 2006 by The National Academy of Sciences of the USA
Furthermore, if the seafloor depth of injection is >3,000 m, then the injected CO\(_2\) will be denser than the ambient pore fluid. The lower density pore fluid acts as a buoyancy cap on the system and ensures gravitational stability. The gravitational stability of the system in deep-sea sediments is in contrast with terrestrial geologic storage where the high pressures and high temperatures cause the injected supercritical CO\(_2\) to be gravitationally unstable. The buoyancy cap, provided by the pore water, serves the same purpose in deep-sea sediments as a cap rock serves in terrestrial geologic formations. The buoyancy cap, however, is superior to a cap rock because conduits in a cap rock enable buoyant CO\(_2\) to escape. In contrast, the gravitational stability provided by the buoyancy cap guarantees that fractures in the sediment column cannot serve as conduits for the CO\(_2\), and even large geomechanical perturbations, such as earthquakes, cannot cause the CO\(_2\)(l) to be released.

Storing CO\(_2\) in deep-sea sediments was first proposed by Koide et al. (18) who considered storing CO\(_2\)-clay-ash solutions and CO\(_2\)(l) below tens of meters of unconsolidated marine sediments. They identified three seafloor depth regimes for the storage of dissolved CO\(_2\): “shallow subsedbed” (<300 m), “deep subsedbed” (300–3,700 m), and “super deep subsedbed” (>3,700 m). In this study, we describe a different scenario than envisioned by Koide et al. Specifically, we consider injecting pure CO\(_2\)(l) below at least 3,000 m of ocean and several hundred meters of marine sediment. The key aspect of our study is to inject pure CO\(_2\)(l) below the sediment layer where CO\(_2\) hydrates form and below the sediment layer of less dense pore fluid. As will be discussed, the relative location of these sediment layers and the injected CO\(_2\)(l) ensures permanent CO\(_2\) storage.

The geothermal gradient, which varies from 0.02°C/m to 0.04°C/m, controls changes in the density of CO\(_2\)(l) injected into deep-sea sediments by expanding and contracting the mobile CO\(_2\)(l) until its density equals the density of the surrounding pore fluid. Given a seafloor depth of 3,500 m and a geothermal gradient of 0.03°C/m, the injected CO\(_2\)(l) becomes neutrally buoyant at ~200 m below the seafloor (10). Above the sediment depth of neutral buoyancy, the CO\(_2\)(l) is denser than the ambient pore fluid. We refer to this range between the seafloor and the sediment depth of neutral buoyancy as the negative buoyancy zone (NBZ) (Fig. 2).

Postinjection Chemistry and Sediment Composition. To fully describe the fate of CO\(_2\) injected below the seafloor, the chemical reactions between CO\(_2\), seawater, and sediments must be considered. CO\(_2\) that has been injected into deep-sea sediments will slowly dissolve, forming a CO\(_2\)(aq) solution that is denser than the surrounding pore fluid (19). At 30 MPa and 3°C, the solution becomes saturated at a CO\(_2\)(aq) mole fraction of ~5% (20). The solubility of CO\(_2\) indicates that a given quantity of CO\(_2\)(l) must interact with 20 times as much pore fluid to fully dissolve. Therefore, during the injection, CO\(_2\)(l) is the dominant phase.

The composition of the marine sediments near the injection site will determine how the injected CO\(_2\) interacts with the host rock. Calcareous sediments might be an attractive repository because of their relatively high permeability (21) and their tendency to react with carbonic acid. If CO\(_2\) were injected into calcareous sediments at high pressure, then the relatively low pH of the CO\(_2\)(aq) solution is expected to dissolve carbonate minerals and add alkalinity to the pore fluid. The addition of alkalinity to the pore fluid will increase the concentration of CO\(_2\)(aq) by shifting the carbonate equilibrium toward bicarbonate. Bicarbonate is a more permanent storage state than CO\(_2\)(aq) because bicarbonate cannot directly degas from solution.

The total dissolution of carbonate minerals, however, is expected to be relatively small; for a cubic meter of limestone of 50% porosity filled with CO\(_2\)-saturated pore water in equilibrium with 30 MPa pCO\(_2\)~7.5 kg or 0.5% of the rock will dissolve before the pore fluid is saturated. It is important to note that the saturation calculation assumes the CO\(_2\)-saturated pore fluid is not flowing. As described in *Long-Term Fate of CO\(_2\) in Deep-Sea Sediments* below, both the pure CO\(_2\)(l) phase and the CO\(_2\)-saturated pore fluid are expected to flow by buoyancy-driven advection. As result of that flow, certain regions in the porous media may become undersaturated in Ca\(^{2+}\), enabling additional dissolution of the host rock.

Because CO\(_2\) would be injected as a separate liquid phase, the host rock will not experience large fluxes of CO\(_2\)(aq) near the injection well. Nevertheless, host-rock dissolution may be im-
important because minor increases in porosity have been shown to generate large increases in permeability (22–24). The exact relationship between porosity and permeability in carbonate sediment is highly variable (25), and further work is required to quantify whether carbonate dissolution will have a significant effect.

CO₂ Hydrate Formation. The high pressures and low temperatures necessary to compress CO₂(l) to greater density than the pore fluid are similar to the conditions necessary for CO₂ hydrates to form. CO₂ hydrates (5.75 H₂O·CO₂) are nonstoichiometric crystalline compounds that form at high pressures and low temperatures by trapping CO₂ molecules in hydrogen-bonded cages of H₂O (26). These compounds occur in a three-phase metastable equilibrium between CO₂(l), CO₂(aq), and hydrate (20).

We refer to the subseafloor region with low enough temperatures and high enough pressures for hydrate formation as the hydrate formation zone (HFZ). The HFZ extends from the seafloor downward into the sediment until the temperature rises above the boundary of the hydrate stability field. A comparison of the stability conditions for CO₂ hydrates (27) with the CO₂ buoyancy-depth relationship reveals that the HFZ overlaps to a great extent with the NBZ. Although the HFZ exists in submarine sediment at seafloor depths of ~400 m, CO₂(l) does not become denser than seawater until a seafloor depth of ~2,900 m. Below ~2,900 m of ocean, however, the thickness of the NBZ grows more rapidly then the thickness of the HFZ, and at seafloor depths >4,000 m, the NBZ is thicker than the HFZ (Fig. 3).

The overlap of the HFZ and the NBZ presents both implementation difficulties and storage opportunities. Hydrates are immobile crystals that clog pore spaces and impede flow. As a result, hydrate formation is expected to generate a self-forming cap that limits the migration of CO₂ and enhances storage stability. On the other hand, if the injection point is within the HFZ, then hydrate formation will decrease permeability near the injection point and may increase the energy required for injection. The optimal sediment depth of injection will depend on the relationship between depth and intrinsic permeability and on the degree to which hydrate formation affects the relative permeability of CO₂. The composition of the injection site below the HFZ may be either chalk or limestone. The intrinsic permeability of chalk and limestone ranges from 0.1 to 1.000 mD (28). If the intrinsic permeability below the HFZ is lower than the relative permeability of CO₂(l) to CO₂ hydrates, then no benefit is gained from injecting below the HFZ. Further work is needed to establish the effect of hydrate formation on permeability. We expect, however, that hydrate formation will cause sharp reductions in the relative permeability of CO₂(l), and that locating the injection point below the HFZ will be energetically favorable to locating it within the HFZ.

When the seafloor depth is shallower than 4,000 m, the HFZ is thicker than the NBZ, and avoiding hydrate formation near the injection point requires that the CO₂(l) be injected below both the HFZ and the NBZ. CO₂(l) injected below the HFZ and the NBZ, CO₂(l) injected below the NBZ is buoyant at the point of injection and will rise until it reaches the bottom of the HFZ. As the CO₂(l) flows into the HFZ, it will form CO₂ hydrates, which will clog the pore space and form a cap that limits the upward migration of the remaining CO₂(l) (29). If the hydrate cap does not form an impermeable seal, then some CO₂(l) may flow within the HFZ to the bottom of the NBZ. Once that CO₂ reaches the bottom of the NBZ, it becomes neutrally buoyant and gravitationally stable. Injecting below both the HFZ and the NBZ takes advantage of both the buoyancy cap provided by the NBZ and the self-forming hydrate cap provided by the HFZ.

If CO₂ were injected into sediment below a seafloor depth of 4,000 m, where the NBZ is thicker than the HFZ, then the CO₂ would be injected below the HFZ and directly into the NBZ. In such a configuration, hydrates are unlikely to form because the CO₂(l) is expected to percolate away from the HFZ to the bottom of the NBZ where it will reside beneath both the buoyancy cap and the hydrate cap.

Discussion

Thermal Evolution of the Injected CO₂. As the CO₂ is pumped from the surface to the seafloor, heat will be transferred from the relatively warm CO₂ to the relatively cold ocean water. The temperature of the CO₂ in the pipeline as a function of depth below the ocean surface is given by the solution to the radial heat equation:

\[T(z) = T_{\text{ocean}} + (T_1 - T_{\text{ocean}})e^{-\frac{2K}{\pi r_1^2 K} z^2}, \]

where \(k \) is the thermal conductivity of the pipe, \(\rho \) is the density of the fluid, \(r_1 \) is the inner radius of the pipe, \(\Delta r \) is the pipe thickness, \(T \) is the temperature of the CO₂ in the pipe, \(u_e \) is the velocity in the vertical direction, \(T_{\text{ocean}} \) is ocean temperature, and \(z \) is the water depth below the ocean surface. For reasonable values \([K = 50 \text{ W/(mK)}], r_1 = 0.25 \text{ m}, \Delta r = 0.1 \text{ m}, C_p = 2,000 \text{ J/(kgK)}, \rho = 1,000 \text{ kg/m}^3, \text{ and } u_e = 1 \text{ m/s} \) the exponential coefficient becomes about \(-0.002 \) at \(z = 3,000 \text{ m} \). Therefore, unless the pipeline is insulated, the CO₂ in the pipeline will thermally equilibrate with the ocean by the time it reaches the seafloor.

Beneath the seafloor, the sediment temperature increases by 0.02 to 0.04°C/m, but the relatively short period it takes CO₂(l) to flow through the pipeline from the seafloor to the injection point is not long enough for the CO₂(l) in the pipeline to thermally equilibrate with the sediment. Furthermore, thermal boundary layers are expected to form in the sediment around the pipe, further insulating the CO₂ once it passes beneath the seafloor. As a result, if the temperature inside the pipe is not carefully controlled, then the CO₂(l) temperature at the injection point will be several degrees colder than the pore fluid and cold enough to form CO₂ hydrates. The primary reason to inject CO₂(l) below the HFZ is to avoid hydrate formation near the injection point. Therefore, it will be necessary to carefully control the CO₂(l) temperature at the injection point by either heating the CO₂(l) in the pipeline or insulating the ocean pipeline to keep the CO₂(l) at higher temperatures.

During injection, the CO₂(l) may be colder than the surrounding pore fluid and host rock. Depending on the injection temperature, the CO₂(l) may be positively, negatively, or neutrally buoyant near the injection point. Over time, however, the CO₂(l) plume will spread, and the regions of the plume farthest
from the injection point will reach thermal equilibrium with the pore fluid. As heat is transferred from the pore fluid and the host rock to the CO2(l), the CO2(l) will expand and rise to the bottom of the HFZ where CO2 hydrates begin to form.

An interesting feature of this system is that the coefficient of thermal expansion for CO2(l) is high enough that, given a high enough intrinsic permeability, a typical geothermal gradient may drive some convection within the fully saturated CO2(l) plume (30). The criterion for the onset of convection in a saturated porous layer subject to a vertical temperature gradient is given by the Rayleigh-Darcy number (30, 31). For the system of interest (i.e., liquid CO2 at ~30 MPa and ~8°C subject to a geothermal gradient of ~0.03°C/m) the stability condition indicates that the saturated CO2(l) plume is convectively unstable when the effective permeability is greater than ~10^{-15} m^2. This stability threshold indicates that we should expect some convection within the saturated CO2(l) plume because the reservoirs of interest have permeabilities in the range of 10^{-12} m^2 to 10^{-15} m^2. The onset of convection may be important in entraining additional water into the CO2(aq) plume, which will cause the CO2(l) to dissolve more rapidly.

Long-Term Fate of CO2 in Deep-Sea Sediments. We expect the CO2(l) injected below the seafloor to evolve in a way that ensures permanent storage (Fig. 4). Initially, the CO2(l) injected below the HFZ and the NBZ will flow upward until it reaches the bottom of the HFZ. Multiphase flow in porous media is partially described by Darcy’s law with the additional relative permeability parameter (Ki):

$$ u_i = \frac{k_i}{\mu_i} (\nabla P_i + \rho_i g), $$ \hspace{1cm} [2]

where k is the intrinsic permeability, K_i is the relative permeability of phase i, P_i is the pressure of phase i, \rho_i is the density of phase i, \mu_i is the viscosity of fluid i, and g is gravity. As an order of magnitude calculation for the instantaneous flow rate of the CO2(l) phase at a particular point in space and time, the driving force of the flow is the difference in density between CO2(l) and seawater:

$$ u_{CO2} = - \frac{k_{CO2} g}{\mu_{CO2}} (\rho_{CO2} - \rho_{H2O}). $$ \hspace{1cm} [3]

For reasonable values (e.g., k = 10^{-13} m^2, K_{CO2} = 1 g/10 m^2 s, \mu_{CO2} = 10^{-4} kg/(ms), and \rho_{H2O} - \rho_{CO2} = 10^2 kg/(m^3)), u_{CO2} is on the order of 10^{-6} m/s (~10 m/yr). All of the parameters described are well constrained except for the intrinsic permeability (k), which can vary from 10^{-12} m^2 to 10^{-15} m^2, resulting in a range of velocities from 10^2 m/yr to ~10^{-1} m/yr.

Once the CO2(l) reaches the bottom of the HFZ, then CO2 hydrates will form, clogging pore channels and creating a cap of limited permeability. We expect the additional CO2 flowing up from the injection point to become physically trapped beneath the hydrate cap and be forced to spread laterally. As the CO2(l) flows laterally, the hydrate cap will grow, resulting in a larger storage area.

The hydrates that compose the self-forming cap are stable as long as they are in contact with pore fluid saturated with CO2(aq). Assuming the CO2(l) to CO2(aq) dissolution kinetics are rapid, then the pore fluid in contact with pure CO2(l) plume will be saturated in CO2(aq) until the entire plume of CO2(l) dissolves. Therefore, the CO2 hydrate cap will not dissolve until the CO2(l) plume has fully dissolved.

The CO2(l) plume will dissolve more rapidly than expected by diffusion alone because buoyancy-driven advection will mix the CO2(l) with the pore fluid. Pore fluid that becomes saturated in CO2(aq) will sink because it is denser than both the CO2(l) and the pristine pore fluid (19). We expect the sinking of the saturated pore fluid to entrain additional pore fluid from outside the CO2(l) plume and accelerate the dissolution of CO2(l) and CO2 hydrates. Assuming a diffusion constant of ~10^{-9} m^2/s and a tortuosity of ~10^{-1}, diffusion sets the upper-bound on the time scale of hydrate dissolution at ~10^6 years.

It is clear, however, that buoyancy-driven advection and convection will accelerate the dissolution of the CO2hydrate and the downward transport of CO2. Once the CO2 hydrates fully dissolve, the CO2(aq)-saturated pore fluid is expected to percolate downward through the sediment column, and the CO2(aq) concentration is expected to decline as the solution mixes with greater and greater volumes of water. Eventually, the buoyancy-driven advection will cease as the density difference between the
not be injected beneath very steep slopes as landslides may expose the CO₂(l). The thickness of the sediment is not very limiting because the majority of deep-sea sediments on the North American continental margins are thicker than the HFZ. There may, however, be mechanical difficulties associated with injecting large quantities of CO₂ into deep-sea sediments that will be discovered after further study and experimentation. Finally, a volume of pore water roughly equal to the volume of injected CO₂ will be forced up into the ocean from the sediments. The implications of forcing the pore water into the ocean must be considered.

Summary

Deep-sea sediments at high pressure and low temperature provide a virtually unlimited and permanent reservoir for carbon dioxide captured from fossil fuel combustion. When injected below the ocean floor at an ocean depth >3,000 m, CO₂ will remain below a layer of more buoyant pore fluid. Hydrate formation will also impede the upward flow of CO₂ as it cools along a geothermal gradient. Carbonate dissolution will play a minor role in the system and may affect permeability within the reservoir. Over time scales of thousands of years, the CO₂ will dissolve into the pore fluid, and the CO₂(aq) solution will sink until it becomes sufficiently dense such that its density equals that of the surrounding pore fluid. Further transport can only be accomplished by molecular diffusion over millions of years. If field experiments confirm that the system behaves as described, then the permanence guaranteed by the double cap of buoyancy and CO₂ hydrates will enable CO₂(l) to be stored without any investment in monitoring or verification technology. For these reasons, we propose that CO₂ storage in deep-sea sediments at high pressures and low temperatures be considered along with other options.

We thank John Holdren, Jeffery Bielicki, David Thompson, David Keith, Rick Murray, and Juerg Matter for assistance and advice. This work was supported by Department of Energy Grant DE-FG26-04NT42123, the Merck Fund of the New York Community Trust, and a graduate student fellowship from the Link Foundation (to K.Z.H.).

References

Corrections

APPLIED PHYSICAL SCIENCES. For the article “Permanent carbon dioxide storage in deep-sea sediments,” by Kurt Zenz House, Daniel P. Schrag, Charles F. Harvey, and Klaus S. Lackner, which appeared in issue 33, August 15, 2006, of Proc Natl Acad Sci USA (103:12291–12295; first published August 7, 2006; 10.1073/pnas.0605318103), due to a printer’s error, the sentence beginning on the sixth line of the abstract, “We show that injecting CO2 into deep-sea sediments <3,000-m water depth and a few hundred meters of sediment provides permanent geologic storage even with large geomechanical perturbations,” should read: “We show that injecting CO2 into deep-sea sediments below 3,000-m water depth and a few hundred meters of sediment provides permanent geologic storage even with large geomechanical perturbations.” This error does not affect the conclusions of the article.

DEVELOPMENTAL BIOLOGY. For the article “Notch/Delta signaling constrains reengineering of pro-T cells by PU.1,” by Christopher B. Franco, Deirdre D. Scripture-Adams, Irina Proekt, Tom Taghon, Angela H. Weiss, Mary A. Yui, Stephanie L. Adams, Rochelle A. Diamond, and Ellen V. Rothenberg, which appeared in issue 32, August 8, 2006, of Proc Natl Acad Sci USA (103:11993-11998; first published July 31, 2006; 10.1073/pnas.0601188103), the authors note that on page 11993, the last sentence of the first paragraph, second column, “Commitment at the DN3 stage coincides with an ~100-times drop in the expression of PU.1 RNA (2, 12),” should read: “Commitment at the DN3 stage coincides with an ~20-times drop in the expression of PU.1 RNA, culminating an ~100-times overall drop from the DN1 stage (2, 12).” This alteration does not affect the conclusions of the article.

www.pnas.org/cgi/doi/10.1073/pnas.0607045103

GENETICS. For the article “Monoallelic expression and methylation of imprinted genes in human and mouse embryonic germ cell lineages,” by Patrick Onyango, Shan Jiang, Hiroshi Uejima, Michael J. Shamblott, John D. Gearhart, Hengmi Cui, and Andrew P. Feinberg, which appeared in issue 16, August 6, 2002, of Proc Natl Acad Sci USA (99:10599–10604; first published July 11, 2002; 10.1073/pnas.152327599), the authors note that in the Acknowledgments, the grant listed should have been National Institutes of Health Grant CA65145 (to A.P.F.).

www.pnas.org/cgi/doi/10.1073/pnas.0605707103